Tópico 4
Gram-Schmidt e decomposição QR

Pedro Aladar Tonelli

Família ortonormal

Vamos fixar os espaços vetoriais $V=\mathbb{R}^n$ e $W=\mathbb{R}^m$, cada um deles munido de um produto interno, vamos por simplicidade, considerar o produto interno: $$\langle \mathbf{x},\mathbf{y}\rangle =\mathbf{x}^{T}\mathbf{y} = \sum x_iy_i$$ Uma família de vetores $\{\vec{e_1}, \dots, \vec{e_k} \}$ é ortonormal quando $$\langle \vec{e_i},\vec{e_j} \rangle = \delta_{ij}$$

Base Ortonormal

Em particular se $\{\vec{e_1}, \dots, \vec{e_n} \}$ for uma base ortonormal e $$ \mathbf{x} = x_1\vec{e_1} + \cdots + x_n\vec{e_n} $$ então $$ x_i = \langle \mathbf{x} , \vec{e_i} \rangle $$

Ortonormalização de uma família LI

Problema: A partir de uma família de vetores LI $\{\mathbf{x_1},\dots, \mathbf{x_k}\}$, obter uma família ortonormal $\{\mathbf{h_1}, \dots, \mathbf{h_k}\}$ tal que para cada $i\in\{1,\dots,k\}$ temos $$ \left[ \mathbf{x_1},\dots,\mathbf{x_i} \right]_{ev}=\left[ \mathbf{h_1},\dots,\mathbf{h_i} \right]_{ev} $$

Algoritmo de Gram-Schmidt

$$ \begin{gather} \mathbf{h_1} = \frac{\mathbf{x_1}}{\|\mathbf{x_1}\|} \\ \text{ para } i \in 2:k \\ \mathbf{a_i} = \mathbf{x_i} - \sum_{l=1}^{i-1}\langle \mathbf{x_i} , \mathbf{h_l}\rangle \mathbf{h_l}\\ \mathbf{h_i} = \frac{\mathbf{a_i}}{\|\mathbf{a_i}\|} \end{gather} $$

Exemplo

\begin{equation} \left[ \begin{array}{ccc} \mathbf{x_1} & \mathbf{x_2} & \mathbf{x_3} \\ \hline 1 & 2 & 0 \\ 1 & 3 & 2 \\ 0 & -1 & 0 \\ \end{array} \right] \end{equation}
\begin{equation} \left[ \begin{array}{ccc} \mathbf{x_1} & \mathbf{x_2} & \mathbf{x_3} \\ \hline 1 & 2 & 0 \\ 1 & 3 & 2 \\ 0 & -1 & 0 \\ \end{array} \right]\left[ \begin{array}{ccc} & & \\ \hline 0.70710 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \\ \end{array}\right] \end{equation}
\begin{equation} \left[ \begin{array}{ccc} \mathbf{h_1} & \mathbf{x_2} & \mathbf{x_3} \\ \hline 0.70710 & 2.0 & 0.0 \\ 0.70710 & 3.0 & 2.0 \\ 0.0 & -1.0 & 0.0 \\ \end{array} \right] \end{equation}
\begin{equation}= \left[ \begin{array}{ccc} \mathbf{h_1} & \mathbf{x_2} & \mathbf{x_3} \\ \hline 0.70710 & 2.0 & 0.0 \\ 0.70710 & 3.0 & 2.0 \\ 0.0 & -1.0 & 0.0 \\ \end{array} \right]\left[ \begin{array}{ccc} & & \\ \hline 1.0 & -3.53553 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \\ \end{array} \right] \end{equation}
\begin{equation} \left[ \begin{array}{ccc} \mathbf{h_1} & \mathbf{a_2} & \mathbf{x_3} \\ \hline 0.70710 & -0.5 & 0.0 \\ 0.70710 & 0.5 & 2.0 \\ 0.0 & -1.0 & 0.0 \\ \end{array} \right]*\left[ \begin{array}{ccc} & & \\ \hline 1.0 & 0.0 & 0.0 \\ 0.0 & 0.8165 & 0.0 \\ 0.0 & 0.0 & 1.0 \\ \end{array} \right] \end{equation}
\begin{equation} \left[ \begin{array}{ccc} \mathbf{h_1} & \mathbf{h_2} & \mathbf{x_3} \\ \hline 0.707107 & -0.4082483 & 0.0 \\ 0.707107 & 0.4082483 & 2.0 \\ 0.0 & -0.8164966 & 0.0 \\ \end{array} \right]*\left[ \begin{array}{ccc} & & \\ \hline 1.0 & 0.0 & -1.41421 \\ 0.0 & 1.0 & -0.81649 \\ 0.0 & 0.0 & 1.0 \\ \end{array} \right] \end{equation}
\begin{equation} \left[ \begin{array}{ccc} \mathbf{h_1} & \mathbf{h_2} & \mathbf{a_3} \\ \hline 0.70710 & -0.40824 & -0.66666 \\ 0.70710 & 0.40824 & 0.66666 \\ 0.0 & -0.81650 & 0.66666 \\ \end{array} \right]*\left[ \begin{array}{ccc} & & \\ \hline 1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.86602 \\ \end{array} \right] \end{equation}
\begin{equation} \left[ \begin{array}{ccc} \mathbf{h_1} & \mathbf{h_2} & \mathbf{h_3} \\ \hline 0.70710 & -0.40824 & -0.57735 \\ 0.70710 & 0.40824 & 0.57735 \\ 0.0 & -0.8164966 & 0.57735 \\ \end{array} \right] \end{equation}
\begin{equation} \left[ \begin{array}{ccc} 0.7071067811865475 & -2.041241452319315 & 0.5773502691896276 \\ 0.0 & 0.8164965809277261 & -0.5773502691896265 \\ 0.0 & 0.0 & 0.8660254037844387 \\ \end{array} \right] \end{equation}
\begin{equation} \left[ \begin{array}{ccc} 1.4142135623730951 & 3.5355339059327378 & 1.4142135623730951 \\ 0.0 & 1.224744871391589 & 0.816496580927727 \\ 0.0 & 0.0 & 1.1547005383792515 \\ \end{array} \right] \end{equation}

A decomposição $QR$

Seja $A$ uma matriz $n \times k$ de posto $k$, vamos representar esta matriz destacando as colunas que são $LI$. $$ A = \left[ \begin{array}{cccc} \mathbf{x_1} & \mathbf{x_2} & \cdots & \mathbf{x_k} \end{array}\right] $$
O primeiro passo do processo de Gram-Schmidt é dividir $\mathbf{x_1}$ por sua norma, e isto é obtido pela mutiplicação de matrizes: $$ \left[ \begin{array}{cccc} \mathbf{h_1} & \mathbf{x_2} & \cdots & \mathbf{x_k} \end{array}\right]=\left[ \begin{array}{cccc} \mathbf{x_1} & \mathbf{x_2} & \cdots & \mathbf{x_k} \end{array}\right]\left[ \begin{array}{cccc} \frac{1}{\| \mathbf{x_1}\|} & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right] $$
O segundo passo começa com $\mathbf{a_2} = \mathbf{x_2} - \langle \mathbf{x_2},\mathbf{h_1}\rangle \mathbf{h_1}$ que pode ser escrito matricialmente $$ \left[ \begin{array}{cccc} \mathbf{h_1} & \mathbf{a_2} & \cdots & \mathbf{x_k} \end{array}\right]=\left[ \begin{array}{cccc} \mathbf{h_1} & \mathbf{x_2} & \cdots & \mathbf{x_k} \end{array}\right]\left[ \begin{array}{cccc} 1 & \alpha & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots& & \ddots & \vdots \\ 0 & 0& \cdots & 1 \end{array}\right] $$ $\alpha = -\langle \mathbf{x_2},\mathbf{h_1}\rangle$
$$ \begin{gather} \left[ \begin{array}{cccc} \mathbf{h_1} & \mathbf{h_2} & \cdots & \mathbf{x_k} \end{array}\right]= \\ \left[ \begin{array}{cccc} \mathbf{h_1} & \mathbf{a_2} & \cdots & \mathbf{x_k} \end{array}\right]\left[ \begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \frac{1}{\|\mathbf{a_2}\|} & \cdots & 0 \\ \vdots& & \ddots & \vdots \\ 0 & 0& \cdots & 1 \end{array}\right] \end{gather}$$
No fim teremos: $$\left[ \begin{array}{ccc} \mathbf{h_1} & \cdots & \mathbf{h_k} \end{array}\right]=\left[ \begin{array}{ccc} \mathbf{x_1} & \cdots & \mathbf{x_k} \end{array}\right]\left[ \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1k} \\ 0 & a_{22} & \cdots & a_{2k} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{kk} \end{array}\right]$$